Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.
نویسندگان
چکیده
The contributions of cell-cell interactions to the establishment of specific patterns of innervation within target brain regions are not known. To provide an experimental analysis of the regulation of afferent axonal growth, we have developed an in vitro assay system, based on the developing mouse cerebellum, in which afferent axons from a brainstem source of mossy fiber afferents, the basilar pontine nuclei, were cocultured with astroglia or granule neurons purified from the cerebellum. In the absence of cells from the cerebellum, pontine explants produced axons that fasciculated and extended rapidly on a culture surface treated with poly-lysine or laminin. When pontine neurites grew onto cerebellar astroglial cells, outgrowth was more abundant than on substrates alone, suggesting that glial cells provide a positive signal for axon extension. Time-lapse video microscopy indicated that the rate of neurite extension increased from less than 50 microns/hr to more than 100 microns/hr when axonal growth cones moved from the culture substratum onto an astroglial-cell surface. Acceleration of neurite extension was also observed as pontine neurites grew onto other pontine neurites. By contrast, when pontine neurites grew on granule neurons, the appropriate targets of mossy fibers, the length of pontine neurites was greatly reduced. As growing axons terminated on granule neurons, the target cells appeared to provide a "stop-growing signal" for axon extension. The length of pontine neurites decreased with increasing granule neuron density. Two lines of evidence suggested that the stop signal was contact mediated. First, video microscopy showed that pontine growth cones stopped extending after contacting a granule neuron. Second, the length of afferent axons was not reduced when pontine neurites grew at a distance from granule neurons. Competition experiments where both astroglia and granule neurons were plated together suggested that the growth arrest signal provided by granule neurons could override the growth-promoting signal provided by astroglial cells. These results suggest that specific cell-cell interactions regulate the growth of pontine afferent axons within their cerebellar target, with axoaxonal and axoglial interactions promoting axon extension and axon-target cell interactions interrupting axon extension.
منابع مشابه
The stop signal revised: immature cerebellar granule neurons in the external germinal layer arrest pontine mossy fiber growth.
During the formation of neuronal circuits, afferent axons often enter target regions before their target cells are mature and then make temporary contacts with nonspecific targets before forming synapses on specific target cells. The regulation of these different steps of afferent-target interactions is poorly understood. The cerebellum is a good model for addressing these aspects, because cere...
متن کاملInhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan.
The chondroitin sulfate proteoglycans (CSPGs) have been implicated as both positive and negative modulators of axonal growth; however, the functional properties of only a few specific CSPGs have been investigated. Here we demonstrate that NG2, an integral membrane CSPG expressed on the surfaces of glial progenitor cells, inhibits neurite growth from neonatal rat cerebellar granule neurons when ...
متن کاملDifferential Effects of Glycosaminoglycans on Neurite Growth on Laminin and Ll Substrates
Glycosaminoglycans (GAGS), the carbohydrate moieties of proteoglycans, are thought to be positive and negative regulators of axonal growth. The physiological role of GAGS is controversial as some studies have shown that GAGS inhibit cell adhesion and neurite elongation (Exp Neurol 109:111, 1990) whereas other studies have reported a growth stimulatory effect of GAGS (Development 114:17, 1992). ...
متن کاملNCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice
Src-related nonreceptor protein tyrosine kinases in nerve growth cones (p59fyn, pp60c-src, and pp62c-yes) are potential intracellular signaling molecules for cell adhesion molecule-directed axonal growth. To determine whether src-related tyrosine kinases mediate NCAM-dependent neurite outgrowth, cultures of cerebellar and sensory neurons from fyn-, src-, and yes- minus mice were analyzed for ne...
متن کاملRORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways
The cerebellum provides an excellent system for understanding how afferent and target neurons coordinate sequential intercellular signals and cell-autonomous genetic programs in development. Mutations in the orphan nuclear receptor RORalpha block Purkinje cell differentiation with a secondary loss of afferent granule cells. We show that early transcriptional targets of RORalpha include both mit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1992